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SUMMARY 
In this study a method of equidistribution of a weight function for grid adaption is modified to produce a 
smoother grid which yields a more accurate solution. In the original scheme the weight function was 
estimated on each grid independently and a large variation in the values of the weight function could 
generate a highly skewed and non-uniform grid which produced large errors. In this study the weight 
function is smoothed by coupling neighbouring weight functions. Abrupt changes in the weight function are 
alleviated and a smoother grid distribution is obtained. With relatively minor modifications of the original 
weight function it is demonstrated in this study that the solution can be improved. The test cases presented 
are the one-dimensional convection-diffusion equation, a laminar polar cavity flow, a laminar backward- 
facing step flow and a turbulent reacting sudden expansion pipe flow. Numerical efficiencies ranging from 
factors of five to 10 are achieved over uniform grid methods. 
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1. INTRODUCTION 

It is well known that fluid flows contain a wide range of length scales. Thin layers such as 
boundary layers, shock waves and flame fronts occur in many flows. Resolution of these regions is 
obviously essential to an accurate overall solution. To obtain an appropriate resolution, grids 
should be dense enough in the regions where needed to catch the fast variation of the flow 
characteristics. On the other hand, grids should be coarse in other regions to save both CPU time 
and computer storage. The problem is that the locations of the regions which require dense grids 
are not known a priori and therefore the grid must be adjusted as the solution proceeds. This 
technique is called the adaptive grid method. There are two approaches for grid adaption.’ One is 
the global grid moving method2-’ which uses a fixed number of grid points and lets them move 
to the region which requires a denser grid. A major concern in using this approach is the 
adequacy of the formulation of weight functions. The other approach is the local mesh refinement 
method6* ’ which adds and deletes grid points during the course of computation. The difficulty of 
this approach is primarily due to the required manipulation of data structures. 

To adapt a grid, there must be a means of determining the regions where a denser grid is 
needed. Various strategies have been devised to serve this purpose. One strategy is to determine 
where large derivatives occur and another is to determine where large errors occur. Hedstrom and 
Rodrique* commented that the grid should be fine in the regions where the local truncation errors 
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are large, not in the regions where derivatives of flow properties are large. Nevertheless, they also 
mentioned that in many cases derivatives of flow properties are pretty good error indicators. In a 
recent studyg we showed that the truncation error of the convection terms in a curvilinear co- 
ordinate system is a function of the metric coefficients and flow property derivatives. Metric 
coefficients prescribe the grid configuration relative to a uniform one and flow property 
derivatives represent the changes of flow properties in the domain. A combination of these two 
factors determines the truncation error. This implies that large flow derivatives may yield large 
truncation errors. In other words, a proper resolution of high-gradient regions may improve the 
solution in many cases. The statement of Hedstrom and Rodrique that flow derivatives can be 
good error estimators is therefore not unfounded. Generally, for a complex physical problem it is 
difficult to estimate the truncation error directly and accurately. Therefore many researchers have 
employed the derivatives of the flow properties to construct the weight function for grid adaption. 
In addition, it is found in our study that, owing to inaccuracy and wide variation of the values of 
the truncation error, a stable grid cannot always be obtained. On the other hand, the moving grid 
method based on a flow property gradient distribution produces a more stable adaptive grid and 
yields an accuracy improvement. These facts show that, theoretically, the truncation error should 
be an ultimate measure of where an adaptive grid scheme should place points. In practice, using 
the truncation error to construct the weight function for grid adaption may not be a reliable 
method. 

In the present study the moving grid method originally employed by Dwyer and co-workers2! 
is modified by including a coupling between weight function values on neighbouring grid points. 
This modification implicitly smooths the distribution of the weight function and avoids dis- 
continuities in the weight function. It is shown that with this minor modification to the weight 
function, grid quality as well as solution accuracy can be improved. This modified method is 
tested for the one-dimensional convection-diffusion equations, a two-dimensional laminar cavity 
flow, a backward-facing step flow and a turbulent reacting flow. The usefulness of the method is 
demonstrated. 

2. MODIFIED MOVING GRID METHOD 

Many of the moving grid methods fall into one of three categories:'0." the variational method, 
the equidistribution method and the grid speed method. Dwyer and c o - w o r k e r ~ ~ ~ ~  employed the 
concept of equidistributing weight functions W(s). The mathematical expression for grid adaption 
in this technique is 

where g is one of the general co-ordinates in the transformed plane and s is the arc length along 
the (-line. If is incremented with a constant value, equation (1) also implies 

W,Asi = constant. (2) 
If Wi is large, Asi becomes small and vice versa. Thus more grid points cluster in regions where 
Wi are large. The weight function W may have different forms depending on the characteristics of 
the physical problem. Dwyer3 assumed the form 
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where the 4i are the relevant dependent variables considered in the grid adaption and the bi are 
the 'normalizing factors' whose values are determined by the preassigned values of the parameters 
Ri, 

The parameter Ri, which is between zero and unity, represents the fraction of the total number of 
grid points which will be allocated to the large-gradient regions of 4i . If the resolution of a 
variable $i is important in a problem, a larger value of Ri may be assigned to that term. A more 
detailed account has been given in a previous study." Note that the second-derivative terms used 
by Dwyer are eliminated from equation ( 3 )  in the present study. The inclusion of the higher-order 
derivative terms sometimes causes severe oscillation of the grid position in the course of 
adaption.' 

Basically, the equidistribution scheme is a special case of the variational method in that only 
the volume measure I,, using the notation in Reference 11, is minimized for grid adaption. 
Smoothness and orthogonality of the grid have not been taken into account in the scheme. As 
discussed in References 9, 13 and 14 as well as in the following section, truncation errors may 
increase significantly if grid size ratios are large. A sudden change of grid size in grid adaption is 
due to a sudden change of the weight function according to equation (2). To prevent such sudden 
changes in weight function values, one may either smooth the solution" or the weight function 
itself." These smoothing treatments can be found, for example, in the work of Rai and 
Ander~on , '~ . ' ~  who used a gravitational analogy for the moving grid wherein the grid points 
attract or repel each other. Special treatment for excessive stretching is needed in their method. 
Nakahashi and Deiwert * employed tension and torsion spring analogies to control the grid 
motion. In the present study, smoothing of the weight function W can be achieved implicitly by 
coupling the weight functions of neighbouring grid points. The modification is relatively simple 
and straightforward and can be conveniently extended to multidimensional flow problems. The 
computational overhead is minor. 

In the formulation, the influence of the neighbouring weight function values on the grid ( i , j )  is 
arbitrarily assumed to decay exponentially with distance away from grid point (i,j), then in a two- 
dimensional problem, along the (-lines, the weight function Wij takes the form 

where N is the number of relevant variables considered, n and rn are the numbers of points in the 
grid along the (- and the q-directions respectively, 4t is the derivative of the variable and C,  is 
the coupling factor; if C,=O, equation ( 5 )  reduces to equation (3) .  Note that the coupling used in 
the expression actually provides a means of smoothing the weight functions and a partial control 
over the skewness of the grid. Therefore no special treatment for excessive grid stretching or 
compression is required since it has been taken care of in the weight function formulation. 

3. ADAPTIVE SOLUTIONS OF THE ONE-DIMENSIONAL MODEL EQUATION 

In this section one-dimensional model equations are studied. The effect of coupling of the weight 
functions on the solutions is discussed. The usefulness and characteristics of the present modified 
moving grid method are demonstrated. 
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3.1. Convection-dijiusion equation without source term 

The one-dimensional convectiondiffusion equation 

u4x = V 4 X X 9  

4 0  = 0, 4@)= 1, 

with boundary conditions 

has the exact solution 

where u and v are constants and L is the overall length. By using the second-order central scheme 
and defining the grid size ratio r as 

the truncation error of the first-derivative term can be expressed as 

TE= --$&.(l -r )Ax- ibxxX( l  - r+r2)Ax2  + higher-order terms. (9) 

If a uniform grid is used, the local truncation error will be second-order and the accumulated 
leading truncation error can be estimated as 

1 1 2  
6 N  =- (-) (Pe)2, 

where N is the number of grid intervals and Pe is the overall grid Peclet number (= uL/v).  The 
accumulated truncation error is proportional to the square of the Peclet number and the square 
of the grid size. For an adaptive grid system, let the weight function take the form W =  dx. It may 
be shown that the grid size ratio r then becomes 

= ePe=, (11) 
where Pe, is the local Peclet number based on the mesh spacing. Note that r in this case is always 
greater than unity. If W takes the form of equation (3), i.e. W =  1 + b ,  &, r becomes 

(12) 
NPe,+ [ ( ~ / v ) ( L + b ~ ) - N P e , ] e ~ " ~  

r =  
W V )  ( L  + b,  1 

For the case of Pe = 50 and N = 99 the distributions of grid sue ratio according to equations (1 1) 
and (12) are plotted in Figure 1. It is seen that in the first case r reaches the value of 67 and nearly 
all of the points are clustered near the end zone. On the other hand, adding '1' to the weight 
function expression leads to a much more reasonable grid size ratio distribution. Figure 2 shows 
that inadequate grid distribution induces higher error. The adaption with equation (12) reduces 
the error by an order of magnitude over the uniform grid solution. Note that in this figure the 
truncation error is plotted on a logarithmic scale. Figure 3 demonstrates that the grid distribution 
with equation (1 1) reduces the accuracy to first-order. The drawback of excessive stretching of the 
grid is obvious. 
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Figure 1.  Distributions of grid size ratio using different weight functions 
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Figure 2. Error distributions for various grid arrangements 
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Figure 3. Error versus number of grid points 

As mentioned before, R in equation (4) represents the percentage of the total grid which is 
allocated to the regions where a specific term in the weight function is important. If R is too small, 
grid adaption may not be effective. On the other hand, if R is too large, overstretching of the grid 
may occur. The problem is how to choose an appropriate R-value. In a previous study’? the 
authors had some comments on the choice of R. In this study it is further confirmed that in 
general the optimum R will be between 0.1 and 0.3 in most cases. In the rest of this study R =0.2 is 
selected unless otherwise specified. For the present test problem Figure 4 shows the error versus 
R-value for the case with Pe = 50. It demonstrates that the moving grid method will be useful 
except if R is either too close to zero (uniform grid) or unity (excessive grid stretching). The 
method is most effective when the value is around 05.  

Coupling of the weight functions can significantly reduce the maximum r-value and therefore 
the solution can generally be improved. The weight function in the present one-dimensional case 
takes the form 

N 

k # i  

Figure 5 compares the r-values of the coupled (C,= 1) and uncoupled weight functions (C,=O). 
The maximum value of r is significantly reduced with the coupled weight function. Figure 6 
depicts the solution using the modified method, which mimics the exact solution closely. Note 
that even with 500 grid points the adaptive solution with the uncoupled weight function still 
cannot capture the ‘boundary layer’ of the solution. This is due to an inadequate grid distribution. 
This inadequate grid is primarily due to an inadequate distribution of the weight function. Large 
grid size as well as large grid size ratio r near the boundary layer region are observed in this case 
(C, = 0, Figure 5). Consequently, the original scheme cannot adequately resolve the boundary 
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Figure 6 .  Improvement in adaptive solution using modified method; Pe = 1O00, N = 500 

layer region. On the other hand, the modified method provides a smoother grid distribution which 
properly resolves the region. 

3.2. Convectiondiffusion equation with source term 

In this case the equation is 
u4.x = v 4 x x  + S(X), 

( a x + b ,  o < x < x , ,  

X I  + x2 < x < L, 

with boundary condition 

4(0)  = 0, d(L)=O, 
where a =  -2 ,  b = 3 ,  x 1 = 2 h ,  x 2 = h ,  h = E  and L=15. 

In this problem Pe=  1000 and the grid number used is 501. On the choice of free parameter R 
it is found that the trend of the variation of error versus R is similar to the previous case. The 
optimal R is around 0.2. Again, coupling of the weight function improves the solution in the 
boundary layer region as shown in Figure 7. The original scheme (C,=O) yields a better solution 
than the uniform grid. However, it is still quite far from the exact one. The reason is similar to that 
discussed in the last problem. The solution using the modified method captures the exact solution 
almost perfectly. 
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Figure 7. Solution improvement using modified method 

4. TWO-DIMENSIONAL FLOWS 

In this section the modified moving grid method is applied to the computation of two- 
dimensional flows. The test problems chosen are a laminar polar cavity flow, a backward-facing 
step flow and a turbulent reacting sudden expansion pipe flow. Note that the convection terms 
are differenced by the second-order upwind scheme. Comparisons are made with the available 
experimental data for all three problems. 

4.1. Polar cavityflow 

In this problem a laminar polar cavity flow with a sliding top at a Reynolds number of 350 is 
computed. Fuchs and Tillmark’ studied this problem both experimentally and numerically. 
They obtained good agreement between the numerical results with 80 x 80 meshes and their 
experimental data for this flow. Comparing our numerical solution for an 81 x 81 uniform grid 
with their experimental data, it was found that good agreement was also obtained.” In the 
present study an even finer uniform grid solution, 129 x 129, is used as a reference solution for 
comparisons. The base grid in this test case is 25 x 25. In Figure 8 the adaptive grids with the 
coupled and uncoupled weight functions are depicted. Careful observation of this figure reveals 
that a better grid is obtained, in the sense that less acute angles and smoother grid size 
distribution are achieved, with the coupled weight function. The solution error distribution of the 
radial velocity component is shown in Figure 9. It is seen that the modified method (C,= 1) not 
only reduces the maximum error but also the size of the large-error regions. It is also noted that 
this error reduction is consistent with the improvement in the grid size ratio as displayed in 
Figure 10. Acute grid line angles are also alleviated in the large-error regions as demonstrated in 
Figure 8. Similar improvements are also found in the other velocity component. In Table I the 
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(b) Ct=l, coupled 
(a) Ci=O, uncoupled 

Figure 8. Adaptive grid lay-outs 

C,= 1 

0.52 

c, = 0. 

Figure 9. Solution error distributions for radial velocity component 

solutions obtained with the various grids are summarized. By using the modified method (25-A), 
about 40% improvement in accuracy over the original method (25-AU) is achieved. Also note 
that the modified method with 25 x 25 base grid yields the same accuracy as the 41 x 41 uniform 
grid solution. A numerical efficiency (ratio of CPU times) of a factor of five to six is obtained in the 
current problem. 
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Figure 10. Grid sue ratio contours 

Table I. Summary of performance of different grids for polar cavity flow 

Case ERR ERR,,, CPU (VAX8600) Total grid points 

25-U 32.6 96.6 131 
25-A 10.7 38.1 151 
25-AU 14.8 55.7 171 
41-U 11.8 35.9 795 
61-U 5.2 16.1 3580 
81-u 3.1 10.0 32900 
129-U - - 499562 

625 
625 
625 

168 1 
3721 
6561 

1664 1 
~ ~~ ~ 

U, uniform grid; A, adaptive grid, coupled; AU, adaptive grid, uncoupled. 

where u and u are the coarse grid velocities, uo and uo are the 129 x 129 fine grid velocities and 
N is the number of grid points. 

4.2.  Backward-facing step Jlow 

The second test problem for two-dimensional computation is a laminar backward-facing step 
flow with Re=800. The definition of the Reynolds number is based on two-thirds of the 
maximum inlet velocity and twice the inlet height. The step height is 0.475 and the total channel 
height is 0.975. A parabolic inlet velocity is assumed. The base grid used is 25 x 25 and a 101 x 101 
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1 

uniform fine grid solution is used as the reference solution for comparisons. In Figure 11 the 
adaptive grids are shown. Note that the length in the y-direction is scaled up by a factor of two to 
demonstrate the grids more clearly. Figure 12 compares the erros of the two adaptive solutions. 
In another study’ we discussed the effects of the grid size ratio r and the grid line angle 8 on the 
truncation errors and concluded that sudden changes in the grid size (i.e. r deviates significantly 
from unity) and severely acute angles should be avoided. The modified method is found to 
improve both of these factors. Figure 13 demonstrates the improvement in the grid size ratio in 
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Figure 11. Adaptive grid lay-outs for backward-facing step 
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the large-error regions. With the coupled weight function the grid size ratios are limited to 
between 0.8 and 1.32, in contrast to a range from 0.34 to 1.88 with the uncoupled weight function. 
The grid line angles are also generally smoother with the modified method, as is shown in Figures 
11 and 14. The above findings may partially explain why the modified method improves the 
solutions. The usefulness of the method can be seen in Table 11. In the table, xl/s is the size of the 
corner bubble, where s is the step height. The accuracy achieved by the current method is 
comparable to that of the 41 x 41 uniform fine grid solution. The solution improvement over that 
of the original method (case 25-AU) is also obvious, particularly with respect to the prediction of 
the corner bubble size. The numerical efficiency in this case is roughly a factor of six. Note that the 
experimental value of xl/s of Armaly et al." was 14.0 and Guj and Stella2' predicted a value of 12 
with a grid number of 41 x 101. 

c,=o 

C , = l  

Figure 14. Distributions of grid line angles 

Table 11. Summary of performance of different grids for backward-facing step flow 

Case 

25-U 
25-A 
25-AU 
41 -U 
61-U 
81-U 
101-u 

9.5 
11.8 
106 
106 
11.7 
11.8 
120 

ERR 

14.5 
3.5 
5.5 
5.6 
2.4 
1.4 
.- 

ERRMA, 

49.6 
15.3 
19.1 
18.1 
8.0 
4.5 

~~ 

CPU (VAX8600) Total grid points 

682 625 
720 625 
751 625 

4551 1681 
15612 372 1 
85445 656 1 

321721 1020 1 

U, uniform grid; A, adaptive grid, coupled; AU, adaptive grid, uncoupled. 

where u and u are the coarse grid velocities, uo and uo are the 101 x 101 fine grid velocities and 
N is the number of grid points. 
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(a) Cd. R=0.1, 31x31 

(b) Ct=l, R=0.1, 31x31 

Figure 15. Adaptive grid arrangements 
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4.3. Reacting sudden expansion pipe flow 

The last test case is a turbulent reacting sudden expansion pipe flow. A standard K--E 
turbulence model and the fast chemistry combustion modelz3 are employed. The specifications of 
the dimensions and boundary conditions of this problem can be found in Reference 24. The 
adaptive grid arrangements are shown in Figure 15. Again, this figure reveals that a better grid is 
obtained with the coupled weight function. Both the grid size variation and the grid line angle are 
smoother. Note that a trace of the flame front can be seen in the grid distribution even before the 
final calculation is conducted. A typical comparison of the solutions using the two approaches is 
shown in Figure 16. In this figure the radial profiles of the mixture fraction are demonstrated. 
Although the modified method yields only a slightly better solution in this case, it is found that if 
larger R (i.e. stronger grid adaption) is used, the solution with the uncoupled weight function 
diverges. This can be attributed to a highly skewed grid. In Figure 17 the adaptive solutions with 
the coupled weight function and R =0.25 are compared with the uniform grid solutions. It is seen 
that the adaptive solutions are much closer to the experimental data near the axis. 

In a turbulent reacting flow it may be inappropriate to attribute the solution improvement 
solely to the numerical error reduction, since the situation is further complicated by the adequacy 
of the physical methods of turbulence and combustion. Nevertheless, in this test case the modified 
method did provide a smoother grid which yielded a converged and improved solution. It should 
be noted that, for a complex flow problem, redistribution of the grid alone may not always 
improve the solution accuracy, since with a fixed number of grid points there is a limit on the 

l O 0 . O l  8 experiments - U.G. 31x31 
U.G. 61x61 
A.G. 31x31 
A.G. 61x61 

----- 
--- 

Radial Position, cm 

Figure 17. Comparison of radial profiles of mixture fraction at x = 32.7; R =0.25 (U.G., uniform grid, A.G., adaptive grid) 
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solution accuracy. In this situation, use of a local refinement method together with the moving 
grid method’can be a better a p p r ~ a c h . ’ ~  

According to another study by the authors,’ a large truncation error in the convection terms 
arises from improper grid size, severe non-uniformity of the grid (large I), improper grid line angle 
as well as large values of the derivatives of flow properties. Therefore a possible error reduction 
can be achieved by improving these factors. Since the moving grid method provides a better 
resolution in high-gradient regions and the adaptive grid also tends to align with local steamlines, 
these can result in an error reduction.’ The present modified method is shown to improve the grid 
size ratio and the grid line angle as demonstrated in the test cases. The statistics of the results 
indicates that the grid improvement due to the modified method yields a further error reduction 
and a better solution. 

5. CONCLUSIONS 

In the present study, one-dimensional model equations and two-dimensional flow problems have 
been employed to demonstrate the usefulness of a modified moving grid method. It is concluded 
that with a fixed number of grid points the present modified method can further improve the 
solution by using a coupled weight function. A major contribution of the modification is probably 
due to the improvement in the grid uniformity as well as the grid smoothness. The present method 
can be conveniently applied to three-dimensional problems. 
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